Composite Solid Sorbent - Solvent Matrix for Capture of CO₂ from Mobile Systems

DE-SC0025105

Malcolm Fabiyi, PhD OptimaBiome

2024 FECM NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

Objectives:

- Demonstrate feasibility of solid matrices to robustly sequester, store and transport CO₂ from cars, semis and heavy duty trucks, and long-range marine vessels
- Develop comprehensive technoeconomic analyses and LCA specifications for the proposed mobile CO₂ capture system(s).

Project details:

- Principal Investigator: Malcolm Fabiyi, PhD
- Duration: 9 months (7/22/2024 to 4/21/2025)
- Budget: \$248,978
- Program Manager: Nicole Shamitko-Klingensmith, Ph.D., PMP

Technology Background

Technology Risks & Challenges

Exhaust gases out with CO₂ removed

Spent modules are removed and dropped off at collation center and replacement modules received

Spent modules are transported via truck to recovery and reuse center — typically facilities with waste heat and / or renewable energy

Recovered CO₂ will be utilized or placed into storage

Recovered matrix to be recycled back into MCC systems

- CO₂ storage and transport capable
- Stable matrix, no degradation of

materials or release of CO₂

- Rapid, effective desorption
- Recyclable, reusable matrix materials

Technical Approach

We combine Sorbents with Solvents and ionic liquids to form a stable solid matrix

2

3

Solid matrix can capture, sequester and transport CO₂ on trucks, trains, etc.

CO₂ is desorbed at the storage site and the solid sorbent – solvent matrix is regenerated for reuse

Sample composite matrix with Solvent + Sorbent

Tubes contains various solvent and matrix combinations with bound CO₂

Matrix with 50% w/w NaOH solvent. Resulting composite is safe to handle.

Objective	Tasks	Month
1	Determine suitable sorbents and solvents that can be utilized to make solid composite matrices that effectively sequester CO₂. Evaluate and characterize sorbent and solvent combinations with targeted attributes	M 1-3
2	Quantify CO₂ sequestration potential of the composite matrices: Determine sequestration potential for matrices across a range of key process variables	M 2-5
3	Determine optimal methods of CO_2 recovery and recycle and reuse of composite matrix materials: Evaluate methods for effective desorption of CO_2 , Quantify recovery efficiency, & energy and material requirements	M 3-6
4	Demonstrate lab scale prototype using live ICE engine systems. Test select matrix options in lab scale mobile carbon capture system using live engine platforms	M 4-7
5	Develop process flow diagrams and undertake technoeconomic analysis and Life Cycle Assessment. Develop process flow diagrams, technology gap analysis, technoeconomic analysis (TEA) and Life Cycle Assessment (LCA)	M 5-9

Performance metric	Success value	Assessment tool
Stability of CO ₂ sequestered within matrix	>90% stability of sequestered CO ₂ within matrix	% CO ₂ loss from saturated matrix
Size and weight of capture device	>0.6 tons CO ₂ per ton capture equipment	kg CO ₂ capture per m ³ of matrix
CO ₂ capture efficiency of matrix	>2.0 mol CO ₂ removed per liter of matrix	mol CO ₂ per L matrix
CO ₂ capture efficiency of recycled and reused material	>70% CO ₂ capture efficiency of recycled vs virgin material	% carbon removal of recycled matrix vs virgin matrix
CO ₂ selectivity of matrix	>50% selectivity for CO_2 vs other gases	% selective removal of CO_2 vs other gases in mix
CO ₂ recovery during de-	>90% recovery of sequestered CO ₂	% CO ₂ recovered vs sorbed CO ₂
sequestration		
Matrix component stability	>90% stability of matrix	None to minimal release of solvent from matrix composite
Specific energy for CO ₂	>1 kg CO ₂ /kWh for NG; >2 kg CO ₂ /kWh for	Energy and CO ₂ capture analysis
capture	diesel & gasoline engines	
Net CO ₂ removed per kg fuel	Kg CO ₂ removed per gal fuel used	Overall efficiency of CO ₂ removal considering
used		incremental fuel usage due to MCC system
% Energy used for CO ₂	<10% decrease in mpg after integration of MCC	Mileage and fuel usage pre and post integration
capture	system	of MCC system
Carbon footprint of MCC	\leq 0 Net kg CO ₂ increment per kg CO ₂	Comprehensive LCA – material and energy
	sequestered and placed in storage using MCC	analysis

Community Benefits

- Hiring Diverse Personnel: 2 of 3 program hires identify as minorities
- Mentorship program: Formal program initiated to support project personnel with career growth & cleantech careers
- Promote cleantech careers: Seminars to Provide seminar session on cleantech solutions to student groups in educational institutions with diverse student bodies in the Maryland area
- Internships: Provide internship opportunities to diverse students with interest in | curiosity about cleantech research & development opportunities

Summary & Lessons Learned

• **Project Hiring:** Completed. Start probing ahead of time,

Staffing agencies are your best friend

- **Testing:** Just getting underway
- **Commercialization:** Participating in DOE sponsored Phase Shift 1 initiative to support commercialization efforts

Malcolm Fabiyi mfabiyi@optimabiome.com